

Expansion Joint Specification Sheet

Additional Information

Primary Information

Quantity: _____ Size Ø: _____ Specification: ____ (EJMA, ASME: B31.1, B31.3, B31.5, B31.9, Section VIII; PED/CE, CRN, ASTM Length (in./mm.): _____ (hot___ or cold ___) F1120, GOST, API, other_____) Configuration: Single___ Dual Anchor Base___ New: ___ or Replacement: ___ Universal____ Hinge____ Gimbal_____ Pressure Balanced____ Ball___ Slip___ Hose___ Delivery date required: Current manufacturer: Pressure: Design: ____ Op.___ (psig __ or ___) Current part number: _____ Temperature: °F. _____ °C.____ °K.____ Current life/Comments: _____ System Location: Hanging ___ Ground ___ Frequency of system cycling: _____ Tunnel Pipe Rack Other Special test pressure: psig _____ or ____ Service: (select those that apply) Special spring rates and effective area desired: Thermal Expansion Effective Pressure Area: _____ sqr. in. Stress Reduction_____ Axial (Comp. or Ext.): _____ lbs./in. (including seismic or settling) Lateral: _____ lbs./in. Vibration____ (which plane____ Angular: ______ in.-lbs./degree (RPM____ frequency____ amplitude___ Torsional: in.-lbs./degree Motions: (values in inches or millimeters) Special paint/coating: Compression: _____ (Enamel: High Temp Aluminum & Gloss Black std.) Extension: _____ Lateral: _____ Special surface preparation: _____ Angular: _____ Special packaging: _____ export crate_____ Torsional: _____ (ball & slip joints) Carrier:_____Terms:_____Dlvy:_____ Media flowing through joint: _____ History, Quality Information, Additional Needs: Flow Velocity_____(fps, fpm, cfm, scfm) System materials of Construction: _____ Pipe Wall thickness Duct____ OD____ or ID_____ End fittings: Flanges: _____ Rating____ Type____ Fixed____ Rotating___ Grade_____ Weld Ends: _____ Sch.___ Grade_____ Grooved Ends: ____Sch. ___Grade_____ Square cut pipe or duct: _____ Other: _____ COMPANY:_____ Orientation: Horizontal Vertical NAME:_____ PHONE:____ Options: Rods___ Liner___ Shroud____ EMAIL: Anchor Base____ (main___ intermediate___) (Rev F) Limit Stops____ Pantograph Linkage_____

General Considerations

- **1.** Do not use pressure thrust force inducing expansion joints on hanging, rack, or rooftop mounted piping systems. The available structures cannot typically react pressure forces. Low-pressure air and exhaust systems excepted.
- **2. Steam requires internal flow liners**. EJMA requires liners when flow exceeds 25 feet per second on gas and 10 feet per second on liquids. Steam flows around 100 feet per second.
- **3.** Use slip and/or ball joints when water hammer is suspected. Water hammer can increase system pressures 9 to 29 times the operating pressure at time of occurrence. Bellows and hose assemblies have an approximate 4 to 1 burst factor. Slip and ball joints are much stronger than bellows.
- **4.** Always get the flow velocities, especially on lines carrying compressed air or other gasses. Frequently, these services require special liner thickness because of very high (300 to 700 feet per second) flow rates. Standard EJMA liners are rated to 100 feet per second. Use ball joints or slip joints on very high velocities.
- **5. Safety Relief Valves and ultra-high velocity vent lines need thick liners.** These systems can flow supersonically--over 1127 feet per second. Pipe liners, not reducing in bore are common. Ball Joints are best, then the 3500SRV. Consult the factory for this service.
- **6.** Series **4500** straight connectors should be installed perpendicular to the vibration or thermal **motions**. Braided straight connectors cannot absorb axial motion.
- **7. Anchor connector applications for best vibration reduction**. Most systems do not anchor piping near the connector. Anchors greatly assist in reducing vibration and noise transmission through the piping.
- **8. Advise factory equipment RPM on vibration applications** especially is there is a history of connector problems. Bellows natural frequencies can be designed to avoid equipment frequencies on pumps, compressors, blowers, fans, engines, etc. If bellows and equipment frequencies coincide, bellows may fail immediately.
- **9. Use laminated bellows on vibration applications**. Three-ply bellows allow greater deflection without fatigue. Multi-ply bellows typically last 4 to 100+ times longer in vibration service.
- **10. Use laminated bellows on high cycling applications**. Three-ply bellows typically offer three to one hundred times the cycle life of single-ply bellows on thermal expansion applications.
- **11. Series 3500 & 6500 drain ports are not large enough to trap pipe runs.** These ports allow draining of the expansion joints or small traps for condensate from the joint only. System traps should be located just upstream of expansion joints if practical and sized per system requirements.
- 12. Series 4500 V-Flex connectors should have the center elbow supported when located above the 5 and 7 O'clock positions.
- **13.** Consider the **5500** series for short axial motion requirements. Popular sizes are usually in stock.
- **14. Consider ball joints for applications with torsion**. Metal bellows typically can accept only very small amounts of torsion, generally less than 0.02 degrees.
- **15. Tank Settlement should use multiplane connectors** such as Ball Joints, Gimbal Joints, or V-Flex Connectors without pressure thrust. Ball Joints are best, as they accept torsion.

(Rev I)